مطالعة حذف آرسنیک از آب سنتتیک با استفاده از کربن فعالشده از پوست گردو

نوع مقاله : مقاله علمی

نویسندگان

1 تهران، دانشگاه شهید بهشتی، دانشکدة آب و محیط زیست

2 استادیار دانشکده مهندسی آب و محیط زیست- پردیس شهید عباسپور -دانشگاه شهید بهشتی

3 تهران، مؤسسة تحقیقات آب وزارت نیرو

چکیده

رشد مصرف آب و بروز خشکسالی­های متمادی در سال­های اخیر، موجب کاهش منابع آب شیرین تجدیدپذیر در کشور شد. از این‌رو، تأمین آب از منابع آب غیر متعارف یکی از راهکارهای اساسی مورد توجه ‌است. استفاده از آب‌های آلوده باید همراه با تصفیة تکمیلی- از جمله استفاده از کربن فعال- باشد تا استانداردهای آب شرب تأمین شود. در این مطالعه، کربن فعال‌شده از پوست گردو به‌عنوان جاذبی ارزان‌قیمت و در دسترس برای حذف آرسنیک از آب سنتتیک استفاده شد. کربن فعال به‌صورت پودر استفاده می‌شود و آزمایش­ها در مقیاس آزمایشگاهی  به‌روش گام‌به‌گام و با تغییر متغیرهای زمان ماند تعادلی، pH، غلظت آرسنیک و دوز جاذب انجام گرفت. زمان ماند سه دقیقه، pH  برابر 5/6، غلظت 120 میکروگرم بر لیتر و میزان دوز 4/0 گرم بر لیتر به‌صورت گام‌به‌گام و در حالت تعادل بهینه به‌دست آمد. بررسی نتایج آزمایش­ها نشان داد ایزوترم لانگمویر با 977/0 = R2 نسبت به ایزوترم فروندلیش مطابقت بیشتری با داده­های آزمایشگاهی دارد. مقایسة یافته­های این پژوهش با تحقیقات مشابه نشان می‌دهد کربن فعال مطالعه‌شده سطح جذب بالایی داشته و قابلیت زیادی در جذب آرسنیک از محیط‌های آبی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Arsenic Removal from Synthetic Water Using Activated Carbon Derived from Walnut Shell

نویسندگان [English]

  • Mohamad Javad Kezemi Balgehshiri 1
  • Abolghasem Alighardashi 2
  • AbdolReza Khaksar Khaksar 3
1 Water and Environmental Engineering Faculty, Shahid Beheshti University , Tehran, Iran
2 Water and Environmental Engineering Faculty, Shahid Beheshti University, Tehran, Iran
3 Water and Wastewater Research Centre, Water Research Institute (WRI), Tehran, Iran
چکیده [English]

Increasing of fresh water consumption and consecutively drought periods caused reduction of renewable freshwater resources in recent years. One of the basic strategies to conquer this problem is using non-conventional water resources particularly reuse of polluted water. In this study, activated carbon derived from walnut shell was used as tertiary treatment. Activated carbon powder was used in laboratory-scale experiments and was used for arsenic removal from synthetic samples. Different parameters such as contact time, pH, concentration of adsorbate and adsorbent dose were investigated. The optimum equilibrium contact time, pH, concentration of adsorbate and adsorbent dose were achieved 3 minutes, 6.5, 120 g/l and 0.4 g/l, respectively. The results indicate that the Freundlich isotherm (with R2=0.977) is more consistent with experimental data than Langmuir isotherm. Comparison of this study with other research studies indicates that low cost activated carbon derived from walnut has a high surface area and arsenic is well adsorbed up to 100 percent from aqueous solution.

کلیدواژه‌ها [English]

  • Adsorption
  • arsenic
  • walnut shell
  • Langmuir Isotherm

 

 
[1]. وزارت نیرو، (1371). "استاندارد مهندسی آب، مبانی و ضوابط طراحی شبکه های جمع آوری آب‌ های سطحی و فاضلاب شهری"، نشریه 118-3
[2]. اسکندری، م. ( 1390). "امکان­سنجی و بررسی استفاده از آبهای غیر متعارف (پساب) در آبیاری با استفاده از نانوفناوری"، جهاد دانشگاهی دانشگاه تربیت مدرس و شرکت سهامی آب منطقه های گیلان.
[3]. Abedin, M.J., Cottep-Howells, J., Meharg, A.A. ) 2002(. "Arsenic uptake andaccumulation in rice (Oryza sativa L.) irrigated with  contaminatedwater", Plant Soil, 240, 311-319.
[4]. بهاروند، س.، میربیک سبزواری، ک.، فرهپور، م. (1386). "تأثیر آرسنیک بر محیط زیست و سلامت انسان"، اولین همایش زمین شناسی زیست محیطی و پزشکی، دانشگاه شهید بهشتی تهران.
[5]. مهدیه، ش.، قادریان، س. (1388). "اثرآرسنیک برجوانه زنی بذر دو رقم گندم"، دومین همایش منطقه ای علوم کشاورزی و صنایع غذایی، دانشگاه آزاد اسلامی واحد فسا.
[6]. WHO. (2004). "Guidelines for drinking water quality", Geneva, 1-22.
[7]. موسسه استاندارد و تحقیقات صنعتی ایران. (1388). "استاندارد 1053 ویژگی­های  فیزیکی و شیمیایی آب آشامیدنی"
[8].  Mosaferi, M., Dastgiri, S., Mesdaghinia, A., Esmailnasab,N. (2008)." Prevalence of skin lesions and exposure to arsenic indrinking water in Iran", Science of The Total Environment, 390(1), 69-76.
[9]. Mosaferi, M., Yunesian, M., Dastgiri, S., Mesdaghinia, A., Esmailnasab, N. (2008). "Prevalence of skin lesions and exposure to arsenic in drinking water in Iran", Science of the total environment, 390(1), 69-76.
[10]. EPA. (2003). "Arsenic Treatment Technology Evaluation Handbook for small Systems". http://www.Epa. gov/safewater, 816-R-03-014.
[11]. Bhattacharya, A.K., Naiya, T. K. Mandal, S. N., Das, S. K. (2008). "Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents", Chemical Engineering Journal,. 137(3), 529-541.
[12]. Cetin, S., Pehlivan, E. (2007). "The use of fly ash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298(1–2), 83-87.
[13]. Kazemipour, M., Ansari, M. (2008). "Removal of lead, cadmium, zinc and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell and apricot stone", Journal of Hazardous Materials, 322-327.
[14]. Altun, T., Pehlivan, E. (2012). "Removal of Cr(VI) from aqueous solutions by modified walnut shells", Food Chemistry, 132(2), 693-700.
[15]. Ding, D., Zhao, Y., Yang, S., Shi, W., Zhang, Z., Lei, Z., Yang, Y. (2013). "Adsorption of cesium from aqueous solution using agricultural residue–Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies", Water research, 47(7), 2563-2571.
[16]. Vitela-Rodriguez, A.V. and J.R. Rangel-Mendez, (2013). "Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles", Journal of Environmental Management, 114(0), 225-231.
[17]. Saqib, A. N. S., Waseem, A., Khan, A. F., Mahmood, Q., Khan, A., Habib, A., Khan, A. R. (2013). "Arsenic bioremediation by low cost materials derived from Blue Pine (Pinus wallichiana) and Walnut (Juglans regia)", Ecological Engineering, 51, 88-94.
[18]. Wang, J., Xu, W., Chen, L., Huang, X., & Liu, J. (2014). "Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water", Chemical Engineering Journal, 251, 25-34.
[19]. Chammui, Y., Sooksamiti, P., Naksata, W., Thiansem, S., Arqueropanyo, O. A. (2014). "Removal of arsenic from aqueous solution by adsorption on Leonardite", Chemical Engineering Journal, 240, 202-210.
[20]. Budinova, T., Savova, D., Tsyntsarski, B., Ania, C. O., Cabal, B., Parra, J. B., Petrov, N. (2009). "Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions", Applied Surface Science, 255(8), 4650-4657.
[21]. Roy, P., N.K. Mondal, and K. Das. (2014). "Modeling of the adsorptive removal of arsenic: A statistical approach", Journal of Environmental Chemical Engineering, 585-597.
[22]. Zabihi, M., A. Ahmadpour, and A.H. Asl,. (2009).  "Removal of mercury from water by carbonaceous sorbents derived from walnut shell", Journal of Hazardous Materials, 167(1–3), 230-236.
[23]. Lorenzen, L., van Deventer, J.S.J., Landi, W.M. ( 1995). "Factors affecting the mechanism of the adsorption of arsenic species on activated carbon", Minerals Engineering, 8(4–5), 557-569.
[24]. Mohan, D., Pittman Jr., C.U. ( 2007). "Arsenic removal from water/wastewater using adsorbents—A critical review", Journal of Hazardous Materials, 142(1–2), 1-53.
[25]. Maji, S.K., Pal, A., Pal, T. ( 2008). "Arsenic removal from real-life groundwater by adsorption on laterite soil", Journal of Hazardous Materials,. 151(2–3), 811-820.
[26]. Batzias, F.A., Sidiras, D.K. ( 2004). "Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems", Journal of Hazardous Materials, 114(1–3), 167-174.
[27]. Bansal, R. C., Goyal, M. (2005). "Activated carbon adsorption.", CRC press.
[28]. Devarly Parhas, Y.K., Indraswati, N., Ismadji, S.( 2008). "The Use of Activated Carbon Prepared from Jackfruit (Artocarpus heterophyllus) Peel Waste for Methylene Blue Removal", Journal of Enviromental Protection science, 2, 1-10.
[29]. Namasivayam, C., Sangeetha, D. (2005). "Removal and recovery of nitrate from water by ZnCl2 activated carbon from coconut coir pith, an agricultural solid waste", Indian Journal of Chemical Thecnology, 12, 512-52
[30]. Sunarso, J., Ismadji, S. (2009). "Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: a review", Journal of hazardous materials, 161(1), 1-20.
[31].McHugh, M., & Krukonis, V. (2013). "Supercritical fluid extraction: principles and practice", Elsevier.