ضد عفونی‌کردن فاضلاب شهری توسط سامانه‌های دوغابی و سیمانی نانوذرات TiO2

نوع مقاله: مقاله علمی

نویسنده

تهران، دانشگاه علم و صنعت ایران، مرکز تحقیقات سیمان

چکیده

استفاده از فعالیت کاتالیزگری نوری نانوذرات تیتانیم دی­اکساید در غیر فعال­سازی میکروارگانیسم­ها، بیشتر به‌صورت سوسپانسیون در مایعات یا به‌طور محدود به‌صورت تثبیت‌شده بر مواد به‌کار گرفته شد. استفاده از فرایند اکسیداسیون پیشرفته، راهکاری جدید در تصفیة آب و فاضلاب درنظر گرفته می­شود. در این مطالعه، از سامانه­های دوغابی (g/L 1/0) و تثبیت‌شدة نانوذرات تیتانیم دی­اکساید در بستر سیمان (1/0-2 درصد)، تحت تابش فرابنفش 160 واتی برای بررسی ویژگی ضد باکتریایی آن­ها استفاده شد. خواص ضد میکروبی کاتالیزگری نوری نانوذرات تیتانیم دی­اکساید، با شمارش کلنی­های باکتری­های زنده انجام گرفت. نتایج آزمایش­ها نشان داد نانوذرات در تاریکی اثر میکروب­کشی نداشت، ولی برعکس در حضور پرتوهای فرابنفش خاصیت باکتری­کشی قوی (99%>) دارند. نتایج سامانة تثبیت نانوذرات نشان دادند خاصیت ضد میکروبی آن­ها مؤثر (80%>) است و بهترین درصد افزودن نانوذرات به سیمان یک درصد است، اما باکتری­های غیر فعال­شده در مجاورت سیمان، پس از طی دورة تاریکی، رشد مجدد بسیار بالایی پیدا می­کنند؛ بنابراین، در این شرایط، تابش نور باید به‌طور پیوسته وجود داشته باشد تا ویژگی کاتالیزگری نوری نانوذرات تیتانیم دی­اکساید، میکروارگانیسم­های فاضلاب را بکشد و آب سالم تهیه شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Disinfection of Municipal Wastewater by the Systems of Suspended and Immobilized Nano-TiO2 in the Cement

نویسنده [English]

  • Azam Yousefi
1 Cement Research Center, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

The photocatalytic activity of nano-TiO2 has been used in inactivation of microorganisms, mainly in the form of suspension in a liquid or partially in an immobilized system. Using advanced oxidation processasa new approach has been used in the purification of water and wastewater. In this research, the systems of suspended (0.1 g/L) and immobilized nano-TiO2 in the cement bed (0.1-2%) under a 160-Watt ultraviolet irradiation were used to study the antibacterial properties in water. The estimated nano-TiO2 photocatalytic antimicrobial property was exhibited by the colony counting method of the viable bacteria. The test results of the nano-TiO2 suspension system indicated that nanoparticles don’t have bactericidal effect on microorganisms in the dark conditon, but in contrast, they exhibit high antimicrobial activity (>99%) under UV irradiation. Furthermore, the photocatalytic activity of the immobilized nano-TiO2 system in cement bed showed that their antimicrobial properties play a role in bacterial killing (>80%) after UV irradiation and the most favorable concentration of nano-TiO2 is found to be 1%, though the bacterial re-growth was observed in the dark condition after UV irradiation. Therefore, the beam source should be constantly turned on till the microorganisms exists in wastewater are killed by photocatalytic properties of nano-TiO2 and clean water is prepared.
 

کلیدواژه‌ها [English]

  • Antimicrobial activity
  • Nano-TiO2
  • Wastewater
  • E. coli
  • Cement
  • Photocatalytic Property
 
[1]              Marugán, J., Grieken, R., Pablos, C., Sordo, C. (2010). “Analogies and differences between photocatalytic oxidation of chemicals and photocatalytic inactivation of microorganisms”, Water Research, 44, 789-796.
[2]              Grieken, R., Marugán, J., Sordo, C., Martínez, P., Pablos, C. (2009) “Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2”, Applied Catalysis B: Environmental, 93, 112-118.
[3]              Foster, H., Ditta, I., Varghese, S., Steele, A. (2011). “Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity”, Applied Microbiology Biotechnology, 90, 1847-1868.
[4]              Gavriliu, S., Lungu, M., Gavriliu, L., Grigore, F., Groza, C. (2009). “Antimicrobial colloidal suspensions of silver-titania”, The Open Chemical and Biomedical Methods Journal, 1, 77-85.
[5]              Jiang, W., Mashayekhi, H., Xing, B. (2009). “Bacterial toxicity comparison between nano- and micro-scaled oxide particles”, Environmental Pollution, 157, 1619-1625.
[6]              Marugán, J., van Grieken, R., Sordo, C., Cruz, C. (2008). “Kinetics of the photocatalytic disinfection of Escherichia coli suspensions”, Applied Catalysis B: Environmental, 82, 27-36.
[7]              Rincón, A. G., Pulgarin, C. (2004). “Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time”, Applied Catalysis B: Environmental, 49, 99-112.
[8]              Liu, H. L., Yang, T. C. K. (2003). “Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light”, Process Biochemistry, 39, 475-481.
[9]              Liu, P., Duan, W., Wang, Q., Li, X. (2010). “The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light”, Colloids and Surfaces B: Biointerfaces, 78, 171-176.
[10]          Lackhoff M., Prieto, X., Nestle, N., Dehn, F., Niessner, R. (2003). “Photocatalytic activity of semiconductor-modified cement-influence of semiconductor type and cement ageing”, Applied Catalysis B: Environmental, 43, 205-216.
[11]          MacFarlane, J. W., Jenkinson, H. F., Scott, T. B. (2011). “Sterilization of microorganisms on jet spray formed titanium dioxide surfaces”, Applied Catalysis B: Environmental, 106, 181-185.
[12]          Machida M., Norimoto K., Kimura, T. (2005). “Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware”, Journal of the American Ceramic Society, 88, 95-100.
[13]          Afzal, Ghauri, M., Okibe, N., Barrie, Johnson D. (2007). “Attachment of acidophilic bacteria to solid surfaces: The significance of species and strain variations”, Hydrometallurgy, 85, 72-80.
[14]          Lin, D. Q., Brixius, P. J., Hubbuch, J. J., Thömmes, J., Kula, M. R. (2003). “Biomass/adsorbent electrostatic interactions in expanded bed adsorption: A zeta potential study”, Biotechnology and Bioengineering, 83, 149-157.
[15]          Giannantonio, D., Kurth, J., Kurtis, K., Sobecky, P. (2009). “Effects of concrete properties and nutrients on fungal colonization and fouling”, International Biodeterioration and Biodegradation, 63, 252-259.
[16]          Chen, J., Poon, C. S. (2009). “Photocatalytic construction and building materials: From fundamentals to applications”, Building and Environment, 44, 1899-1906.
[17]          Guillard, C., Puzenat, E., Lachheb, H., Houas, A., Herrmann, J. M. (2005). “Why inorganic salts decrease the TiO2 photocatalytic efficiency”, International Journal of Photoenergy, 7, 1-9.
[18]    یوسفی، ا.، اله­وردی، ع.، حجازی، پ. (1392). "کاربرد فناوری نوین کاتالیزگری نوری نانوذرات تیتانیم دی­اکساید در کنترل آلودگی میکروبی محیط زیست"، دومین همایش ملی فناوری نوین در کنترل آلودگی­های محیط زیست، تهران.
[19]          Yousefi, A., Allahverdi, A., Hejazi, P. (2013). “Effective Dispersion of Nano-TiO2 Powder for Enhancement of Photocatalytic Properties in Cement Mixes”, Construction and building materials, 41, 224–230.
[20]          Yousefi, A., Allahverdi, A., Hejazi, P. (2014). “Accelerated Biodegradation of Cured Cement Paste by Thiobacillus Species under Simulation Condition”, International Biodeterioration and Biodegradation, 86, 317-326.
[21]          Li, G., Lv, L., Fan, H., Ma, J., Li, Y., Wan, Y., Zhao, X. S. (2010). “Effect of the agglomeration of TiO2 nanoparticles on their photocatalytic performance in the aqueous phase”, Journal of Colloid and Interface Science, 348, 342-347.
[22]          Benabbou, A. K., Derriche, Z., Felix, C., Lejeune, P., Guillard, C. (2007). “Photocatalytic inactivation of Escherischia coli Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation”, Applied Catalysis B: Environmental, 76, 257–263.