[1]. Mehrdadi, N., Hasanlou, H. (2012). “Investigating the Performance of Advanced Treatment Unit of Industrial Wastewater Treatment Plant Using Artificial Neural Network Model”, International Conference on Chemical Processes and Environmental issues (ICCEEI’2012) Singapore.
[2]. Homada, M. F., Al-Ghusian, I. A. (1999). “Integrated Wastewater Treatment Plant Performance Evaluation Using Artificial Neural Networks”, Water Science and Technology, 40 (7), 55-66.
[3]. Bowdena, G. J., Dandyb, G. C., Maier, H. R. (2005). “Input determination for neural network models in water resources applications”, Journal of Hydrology, 301 (1-4), 75–92.
[4]. Oliveira-Esquerre, K. P., Mori, M., Bruns, R. E. (2002). “Simulation of an Industrial Wastewater Treatment Plant Using Artificial Neural Networks and Principal Components Analysis”, Brazilian Journal of Chemical Engineering, 19(4), 365-370.
[5]. Kardam, A., Raj, K. R., Arora, J. K., Srivastava, M. M., Srivastava, S. (2010). “Artificial Neural Network Modeling for Sorption of Cadmium from Aqueous System by Shelled Moringa Oleifera Seed Powder as an Agricultural Waste”, Journal of Water Resource and Protection, 2 (4), 339-344.
[6]. Tezel, G., Yel, E., Sinan, R. K. (2010). “Artificial Neural Network (ANN) Model for Domestic Wastewater Treatment Plant Control”, BALWOIS – Ohrid, Republic of Macedonia, 25- 29 may
[7]. Elmolla, S. E., Chaudhuri, M. (2010). “The Use of Artificial Neural Network (ANN) for Modelling,Simulation and Prediction of Advanced Oxidation Process Performance in Recalcitrant Wastewater Treatment. ”, Artificial Neural Networks – Application, InTech Open Access Publisher.
[8]. Yetilmezsoy, K., Sapci -Zengin, Z. (2009). “Stochastic Modeling Applications for the Prediction of COD Removal Efficiency of UASB Reactors Treating Diluted Real Cotton Textile Wastewater”, Stochastic Environmental Research and Risk Assessment, 23(1), 13-26.
[9]. Vyas, M., Modhera, B., Vyas V., Sharma, A. K. (2011). “Performance Forecasting of Common Effluent Treatment Plant Parameters by Artificial Neural Network”, ARPN Journal of Engineering and Applied Sciences, 6 (1), 38-42.
[10]. Hasanlou, H., Mehrdadi, N., Jafarzadeh, M. T., Hasanlou, H. (2012). “Performance Simulation of H-TDS Unit of FAJR Industrial Wastewater Treatment Plant Using a Combination of Neural Network and Principal Component Analysis”, Journal of Water Resource and Protection, 4 (5), 311-318.
[11]. Mehrdadi, N., Hasanlou, H., Jafarzadeh, M. T., Hasanlou, H., Abdolabadi, H. (2012). “Simulation of Low TDS and Biological Units of Fajr Industrial Wastewater Treatment Plant Using Artificial Neural Network and Principal Component Analysis Hybrid Method”, Journal of Water Resource and Protection, 4 (5), 370-377.
[12]. Zhao, H., Hao, O., McAvoy, T., and Chang, C (1997). “Modeling nutrient dynamics in sequencing batch reactor”, Journal of Environmental Engineering, 123 (4), 311–319.
[13]. Shariat zadeh, M. (2010). “Fajr Petrochemical Environmental Landscape”, National Petrochemical of IRI.
[14]. Zare Chahooki, M. (2011), “Methods of Multivariate Analysis in SPSS”, Department of Natural Resources, University of tehran, Iran.
[15]. Hornik, K., Stinchcombe, M., and White, H.(1989). “Multilayer feedforward networks are universal approximators”, Neural Networks, 2(5), 359-366
[16]. Stone, M. (1974). “Cross-validatory Choice and Assessment of Statistical Predictions”, Journal of the Royal Statistical Society, 36 (2), 111-147.
[17]. Burden, F. R., Brereton, R. G., Walsh, P. T. )1997(. “Cross-validatory selection of test and validation sets in multivariate calibration and neural networks as applied to spectroscopy”, Analyst, 122 (10), 1015-1022.
[18]. Hasanlou, H. (2012). “Simulation Of Industrial Waste Water Treatment Plant Using Artificial Neural Network And Principal Component Analysis Hybrid Method”, MS. Thesis, University of Tehran, Iran.
[19]. Memarian, H., Balasundram, S. K. (2012). “Comparison between Multi-Layer Perceptron and Radial Basis Function Networks for Sediment Load Estimation in a Tropical Watershed”, Journal of Water Resource and Protection, 4(10), 870-876.